

HyperQuery

Quick Start Guide
November 2024

Introduction
HyperQuery is an AI-powered query performance optimization software solution for MySQL databases that
radically improves SQL select statement runtimes without monitoring, without adding new or changing
existing data structure objects, and without requiring extensive understanding of SQL or Optimizer
execution plans. You simply turn HyperQuery on and your queries just run faster. Just as important,
HyperQuery returns rewritten fully optimized queries in the same order, therefore, no database changes
are needed. While results will vary, we've seen 100s to 1,000s X SQL runtime reductions per query. Since
not all queries are problematic, we expect users to experience 10X or better overall. In data warehouse,
data lake, and data analytics environments, where queries can be 10s to 100s of billions of rows complex,
the sky is truly the limit for potential performance gains.

Architecture
HyperQuery deploys non-intrusively. Specifically, it is not directly involved with the database's SQL
optimizer, SQL execution engine, data fetching and returning mechanisms, and in no way sees, touches, or
ever copies or moves your actual data. HyperQuery sits alongside the database and performs its
optimizations transparently with near zero overhead.

Let us explain.

Normally, the execution of a SQL query is processed as shown below in Figure 1. The query enters the
MySQL database and the database optimizer formulates an execution plan. The better the execution plan,
the faster the results can be found, fetched, and returned. The database optimizer usually takes only a few
milliseconds to choose the execution plan. It does not try to correct poorly written SQL or its effects on the
execution plan. Moreover, even when a particular query is run again, the optimizer might generate a
different execution plan due to updated database statistics, data sizes crossing some threshold, data skew,
and numerous other unforeseeable factors. Basically, it works well until it doesn't, and that's the trouble.
Plus, reading – and interpreting/understanding execution plans and tuning SQL to result in better execution
plans is hard.

SELECT
command

MYSQL
Optimizer

Results
Execution

Plan

Figure 1: SQL processing without HyperQuery

QIKR solved this basic shortcoming by adding novel artificial intelligence (AI) and machine learning (ML)
techniques into HyperQuery’s design to help the database's own optimizer run only superior execution
plans. It accomplishes this by examining the database's "slow query" log, identifying problematic queries
guaranteed resulting in poor performance, creating an alternate query which will return the same data in
the same order, and placing that rewrite in the database’s "query rewrite" cache.

So now, when a query enters the database, only one additional step occurs – the optimizer looks to see if
HyperQuery has already found a better rewrite and then the optimizer simply gets the execution plan for
that rewrite.

This whole process still occurs in just a few milliseconds. HyperQuery merely runs at user defined time
intervals to examine the slow query log and post known better rewrites to the query rewrite cache. This
process takes just a few seconds and can be scheduled to run say once every 4-6 hours. You should not be
able to measure any real overhead.

SELECT
command

MYSQL
Optimizer

Results
Execution

Plan

MySQL Slow
Query Log

MySQL
Query

Rewrite
Cache

QIKR

Figure 2: SQL processing with HyperQuery

Deployment
By your choice, and simply requiring intermittent network connectivity to the database whose performance
it's to improve HyperQuery can be deployed in numerous ways:

• whether databases are deployed on-premises or cloud

• whether running on Windows or Linux

• on any physical server, virtual machine, container, or cloud image which can connect to the
database to be improved.

That's it. There is no requirement for HyperQuery to be installed on the actual database server itself, nor to
be installed on the same operating system (OS) as the database, thus, your MySQL database(s) could be on
Linux with HyperQuery on either Windows or Linux.

Installation
HyperQuery can be installed on any version of Windows (desktop or server) and on Linux with Mono
installed. There are five (5) basic steps which must be performed:

1. configure the database
2. install the HyperQuery software
3. define the database connection credentials
4. schedule how often HyperQuery should run to optimize queries (i.e. 2x daily, 4x daily, always on)
5. start the HyperQuery daemon/service

1. Configure the MySQL database:

A. Enable the MySQL "Slow Queries Log"
Edit the MySQL "my.ini" database configuration file to record all the slow queries into a table (i.e.
where slow equals those queries whose run time exceeds some time limit that you define for your
database):

• log-output=TABLE

• slow-query-log=1

• long_query_time=30 (choose this value based upon your observations and concerns)

B. Enable the MySQL "Query Rewrite Cache"
Install the MySQL query rewrite cache plug-in (you may need to get the script from the MySQL zip
file):

• mysql -u root -p < install_rewriter.sql

• mysql> SHOW GLOBAL VARIABLES LIKE 'rewriter_enabled';

Edit the MySQL "my.ini" database configuration file to enable the MySQL rewriter plug-in:

 rewriter_enabled=ON

C. Reload the MySQL Configuration Settings
Linux:

• sudo /etc/init.d/mysql stop

• sudo /etc/init.d/mysql start

Windows:

• net stop <MySQL instance Name>

• net start <MySQL instance Name>

2. Install HyperQuery

HyperQuery is delivered as a .zip file that simply needs to be unzipped into the directory you want
HyperQuery to reside. It creates the following directory structure:

QIKR

bin config log scripts

 Linux:

Verify that MONO version 5.18 or greater is installed using the following Linux command:

• mono –version

Download the HyperQuery.zip file and unzip it into a directory that you define (e.g. /opt/HyperQuery).

• open Linux command line

• cd /opt

• mkdir QIKR

• download QIKR.zip

• unzip QIKR.zip into /opt/QIKR

• mono /opt/QIKR/bin/QIKR-HyperQuery.configurator.exe

 Windows:

Verify that .NET Framework 4.6.2 or greater is installed using the following PowerShell

command: (Get-ItemProperty "HKLM:SOFTWARE\Microsoft\NET Framework

Setup\NDP\v4\Full").Release -ge 394802

Download the HyperQuery.zip file and unzip it into a directory that you define (e.g. C:\Program

Files\HyperQuery).

• open DOS command line

• cd C:\Program Files

• mkdir QIKR

• download QIKR.zip

• unzip QIKR.zip into C:\Program Files

• C:\Program Files\QIKR \bin\ QIKR-HyperQuery.configurator.exe

3. Define database connection credentials
HyperQuery requires the ability to connect to the target database and access to just two (2) system tables:

 mysql.slow_log [read access]

 query_rewrite.rewrite_rules [read / write access and the ability to flush]

You may either create a special HyperQuery user account with just these limited privileges, or you may

connect with your existing DBA user account [e.g. root]. HyperQuery also requires the MySQL system

privilege to flush the query rewrite table containing the rewrite rules. Here are the required grants:

 grant select on mysql.slow_log to 'user'@'%';

 grant select on performance_schema.global_variables to 'user'@'%';

 grant select, insert, delete on query_rewrite.rewrite_rules to 'user'@'%';

 grant execute on procedure query_rewrite.flush_rewrite_rules to 'user'@'%';

HyperQuery has a simple configuration GUI tool for both defining the databases to be optimized and how

often. The process is simple and detailed below.

When you run QIKR-HyperQuery.configurator.exe, it launches the utility shown here. You can create a new

database connection definition by simply clicking the "Add New Database Instance" button.

Doing so opens the following screen, where you define what type of database you are targeting. For now, the only

viable option is to choose "MySQL" or one of its variants. In future releases, QIKR will offer additional database

platforms, but for now, MySQL is the only choice.

Once you selected, the following screen is displayed where you can then define the database connection

credentials and how often it should run. For now, let's focus on just the database connection aspects.

The two highlighted areas allow you to name this database connection, whether it's HyperQuery enabled,

and what the connection information for host, port, database, user, and password are. You should then

click the "Test Connection" button to verify that the information is correct.

4. Schedule QIKR to run at desired intervals
HyperQuery only needs to run occasionally, not continuously, and when it runs, it only runs for a few

seconds. The key decision you need to make is how often do you want HyperQuery to check the Slow SQL

Log for previously unseen, inefficient SQL that could be improved. A reasonable starting point would be to

run HyperQuery every 4 to 6 hours.

NOTE: once HyperQuery has seen an inefficient SQL query and records the rewrite in the query rewrite

cache, that query is now automatically handled by the database optimizer which will always use the

recorded query rewrite.

Once you have verified that HyperQuery can successfully connect to your database (the prior step), you

now need to define when and how it runs. The "Execution Frequency" specifies how often per day you want

HyperQuery to run against the current target database. It defaults to once every 4 hours or 6 times per day,

which is a good value to start with. If you like, you can set this to as often as every 15 minutes or as nominal

as just once per day.

The "Database Execution" section allows you to customize HyperQuery's runtime behavior. There are

three (3) items which you can allow to default or override with your own custom settings. These values are:

1. How long must a query execute before being considered slow by HyperQuery and thus a candidate

for being rewritten? In most case you should consider setting the value the same as in your MySQL

database configuration. But there are times where you may desire the database to log all slow queries

at one value, and QIKR to only fix those above a certain point higher than that value.

2. How many slow queries should be considered as candidates to be rewritten each time HyperQuery

is executed? In many cases, that should probably be all the candidates available, however, you can

specify HyperQuery only look at the top N most inefficient queries.

3. How many rewrites is HyperQuery allowed to register with the MySQL rewrite cache? In many

cases, you will want all rewrites to be posted, however, you may also limit that amount such that the

MySQL query optimizer has a relatively small subset to review in order to limit any overhead for such

examinations.

5. Launch the QIKR daemon/service

 Linux:

o mono /opt/QIKR/bin/ QIKR-HyperQuery.executable.exe
o ps -al to verify that the process is up and running

 Windows:

 Run as an executable

 C:\Program Files\QIKR \bin\ QIKR-HyperQuery.executable.exe

 Run as a .Net Service

▪ installutil C:\Program Files\QIKR \bin\ QIKR-HyperQuery.service.exe
▪ Open windows service manager and you will see the QIKR service

6. Check the HyperQuery log file
As HyperQuery runs, it writes out error, warning, and information messages to its log file contained in the

HyperQuery/log directory. The file is dated for when the execution started. Below is an example of what

the log file contains:

26 Apr 2020 15:54:21,074 INFO QIKR-HyperQuery.executable.exe - QIKR executable starting...

26 Apr 2020 15:54:22,624 INFO QIKR-HyperQuery.executable.exe - QIKR posted 8 rewrites for database: 'MySQL - CentOS - 5.7'

==

26 Apr 2020 15:54:22,624 INFO QIKR-HyperQuery.executable.exe - Original SQL: select * from demo.t1 where concat(year,'-

',month,'-',day) = '2020-03-15'

26 Apr 2020 15:54:22,624 INFO QIKR-HyperQuery.executable.exe - ...

26 Apr 2020 15:54:22,624 INFO QIKR-HyperQuery.executable.exe - Rewritten SQL: select * from demo.t1 where year = '2020'

and month = '03' and day = '15'

==

26 Apr 2020 15:54:22,624 INFO QIKR-HyperQuery.executable.exe - Original SQL: select * from demo.t1 where

strcmp(lname,'Doe')=0

26 Apr 2020 15:54:22,624 INFO QIKR-HyperQuery.executable.exe - ...

26 Apr 2020 15:54:22,624 INFO QIKR-HyperQuery.executable.exe - Rewritten SQL: select * from demo.t1 where lname = 'Doe'

==

26 Apr 2020 15:54:22,624 INFO QIKR-HyperQuery.executable.exe - Original SQL: select * from demo.t1 where

substr(c7,1,3)='xxx'

26 Apr 2020 15:54:22,624 INFO QIKR-HyperQuery.executable.exe - ...

26 Apr 2020 15:54:22,624 INFO QIKR-HyperQuery.executable.exe - Rewritten SQL: select * from demo.t1 where c7 like 'xxx%'

==

Frequently Asked Questions

Q: Enabling the slow query log has some overhead and is sometimes considered best
practice not to enable it. Why should I enable this feature?
A: HyperQuery needs some way to know which queries are running to slow. You can mitigate any
performance concerns by setting the MySQL database to only log those queries above some threshold that
you are comfortable with. For instance, logging slow queries that take longer than 10 seconds to run may
be far too aggressive for your situation. Thus, you might consider a much higher value such as only when
the query takes longer than two minutes to run. As such, you can define and limit the overhead to a value
that represents a fair tradeoff for overhead vs. automatic performance optimization.

Q: Enabling the query cache has a well-known, unacceptable overhead, and in fact has
been deprecated in MySQL version 8.x. Why does HyperQuery rely on this proven risky
technology?
A: HyperQuery does not rely upon nor use that feature, which has a bad performance impact reputation
and is no longer available. HyperQuery instead leverages the optional MySQL "query rewrite cache", which
differs from the deprecated query cache. The query rewrite cache does not add much overhead unless
abused.

Q: Does not having the MySQL optimizer for every query first look to see if a rewrite has
been posted add an unacceptable overhead?
A: It could, that's why HyperQuery allows you to specify the maximum number of rewritten SQL queries to
be posted. That way you can manage that overhead to whatever you deem acceptable. We would not want
to suggest that adding an unlimited or even a very large number of rewrites as a universally good idea. You
should set this with caution much like you do with the slow query log threshold.

Q: But doesn't just comparing the SQL text of potentially very long queries by itself simply
add too much overhead?
A: Not really. MySQL stores queries with a sort of "hash" value based upon the first 1,000 characters. Thus,
by examining the length and this hash value, the lookups can be done quickly and efficiently.

